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Members of the cationic host defense (antimicrobial) peptide

family are widely distributed in nature, existing in organisms

from insects to plants to mammals and non-mammalian

vertebrates. Although many demonstrate direct antimicrobial

activity against bacteria, fungi, eukaryotic parasites and/or

viruses, it has been established that cationic peptides have a

key modulatory role in the innate immune response. More

recent evidence suggests that host defense peptides are

effective adjuvants, are synergistic with other immune

effectors, polarize the adaptive response, and support wound

healing. In addition, the mechanisms of action are being

unraveled, which support more effective implementation of

derivatives of these endogenous peptides as therapeutic

agents.
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Introduction: cationic peptides in host
defense
Cationic amphipathic peptides are found in every com-

plex species [1]. They are generally defined as having 12

to about 50 amino acids with 2–9 positively charged lysine

or arginine residues and up to 50% hydrophobic amino

acids. They fold into a variety of secondary structures

(often after they insert into membrane bilayers) in which

the charged and polar, and hydrophobic residues form

patches on the surface of the molecule [2]. Early work

with insects, amphibians and mammalian phagocytes

demonstrated that they had direct antimicrobial activity

against diverse microbes. More recently, it has become

evident that they have a diverse range of functions in

modulating immunity (Figure 1) which have an impact on

infections and inflammation [1,3–5]. Therefore, although

they are often termed antimicrobial peptides, we prefer

the term used in this review to describe the breadth of

their activities, namely cationic host defense peptides.
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Peptides are expressed with elements of immunity

Innate immunity is the most ancient form of immune

defense, conserved throughout the animal kingdom and

vital to invertebrate host defenses. More recently dis-

covered aspects of innate immunity — most notably, the

family of Toll-like receptors (TLRs) — have illuminated

the previously unrecognized complexity and heterogene-

ity within the innate immune system. Many factors sup-

port important and diverse roles for antimicrobial

peptides in immunity: the robust membership, broad

diversity in sequence and structure, thematic similarity

of vertebrate and invertebrate antimicrobial peptides,

wide distribution in cells of the immune system (leuko-

cytes, Paneth cells) and in tissues that encounter bacterial

infections (gut, trachea) and the observation that they

might be either constitutive or demonstrate TLR- or

inflammation-induced expression or secretion.

The expression of mature (biologically active) peptides

requires proteolytic cleavage [6], might be constitutive or

inducible and depends on species, tissue type, cellular

lineages and/or differentiation state of the cell [7,8]. Gene

expression and/or protein secretion are induced by factors

such as bacterial products, injury and/or inflammatory

stimuli. For example, hBD expression is upregulated in

monocytes (hBD-1 and -2) exposed to bacteria, lipopo-

lysaccharide (LPS) or IFN-g [9,10], in keratinocytes

(hBD-2–4) stimulated with TNF-a, IL-1b, bacteria or

IL-22 (for hBD-2 and -3) [11–13], and in intestinal,

uterine or airway epithelial cells (hBD-1–3) stimulated

with TLR agonists [14–17]. The 50 flanking sequences

upstream of the cathelicidin coding sequence have sev-

eral potential consensus sequences for transcription fac-

tors, including nuclear factor (NF) kB, NF-IL6, acute

phase response factor and IFN-g response elements [18–

20]. Synthesis of hBD-2 is induced in monocytes by IL-

1b and in intestinal epithelial cells by LPS or peptido-

glycan and is dependent on NFkB [14,21–23], whereas

IL-22-induced hBD-2 and -3 expression in keratinocytes

is dependent on the transcription factor STAT3 [13]. IL-

1, TNF-a and TLR agonists also activate NF-kB, the

transcription factor that is responsible for the transcription

of multiple inflammatory and immunity genes in mam-

mals. These data demonstrate that transcriptional regula-

tion of antimicrobial peptides is dependent on the

stimulus and cell type and is regulated and/or coordinated

with the expression of other entities of innate immunity

and acute inflammation [19,20,24].

Peptides combat infection

The role for antimicrobial peptides in immunity is sup-

ported by in vivo evidence in humans and mice correlat-
www.sciencedirect.com
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Figure 1

Functions of cationic host defense peptides (HDPs). Within cytoplasmic granules, HDPs are antimicrobial agents that directly kill microbes, whereas

secreted HDPs interact with cells of the innate immune system to indirectly eradicate pathogens (yellow circles represent bacteria/bacterial products).

HDPs promote immune responses to infection yet simultaneously limit the magnitude of the inflammatory response (suppress production of pro-

inflammatory cytokines such as TNF-a). The multifunctional properties of HDPs make them attractive as therapeutic agents.
ing the expression of antimicrobial peptides with suscept-

ibility or resistance to bacterial infections. Patients with

specific granule deficiency syndrome lack a-defensins

and suffer from severe and frequent bacterial infections

[25]. Others with a condition known as morbus Kostmann

suffer from frequent oral bacterial infections and severe

periodontal disease which correlates with a deficiency in

the human cathelicidin peptide LL-37 and human a-

defensins (HNP1-3) [26]. Low expression of LL-37,

human b-defensin (hBD)-2 and hBD-3 in skin lesions

caused by atopic dermatitis coincides with enhanced

susceptibility to skin infections [27,28]. Conversely,

hBD-2 and hBD-3 expression are enhanced in psoriasis
www.sciencedirect.com
[29] and in bronchoalveolar inflammation [30,31]. The

expression of cathelicidins (LL-37 and mouse cathelici-

din-related antimicrobial peptide [CRAMP]) in skin ker-

atinocytes varies with infection and/or injury [32].

In rodent models, cathelicidins can control bacterial load

and prevent mortality when administered after bacterial

challenge [33–35]. Matrix metalloproteinase-7, b-defen-

sin-1 and CRAMP gene knockout mice are more suscep-

tible to, and fail to clear, infections [36–40]. It should be

noted that, although these observations are consistent

with a role for cationic peptides in host defense, they

are not definitive in distinguishing between a direct
Current Opinion in Immunology 2006, 18:24–30
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antimicrobial function for these peptides, an immunomo-

dulatory role or both in contributing to defense. Further,

these observations correlate the expression of cathelici-

dins and defensins with states of infection and inflamma-

tion and clearly establish a role for antimicrobial peptides

in innate defense, clearance, prevention and protection

against bacterial assault.

Direct antimicrobial activity
The protective effects of the peptides have been attrib-

uted, in part, to the direct antimicrobial killing properties

of purified peptides against bacterial, fungal or viral

pathogens observed in vitro [1,5,41]. Most active antimi-

crobial peptides are able to interact with bacterial mem-

branes, as described by four separate models [2,5]. With

substantial local perturbation of the cytoplasmic mem-

brane bilayer, ion-permeable channels are created, lead-

ing to increased cytoplasmic membrane permeability and

bacterial cell death. Conversely, a substantial number of

antimicrobial peptides, including polyphemusin, a very

potent horseshoe crab antimicrobial peptide [42], can

traverse the membrane [2] and induce killing by acting

on one or more anionic intracellular targets [42–45].

Although there is a broad range of potencies, virtually

all cathelicidins and defensins have direct antimicrobial

activity in vitro under the appropriate conditions.

Although some peptides might retain bactericidal activity

in vitro under physiological conditions, the direct killing

activity is often antagonized by physiological salt condi-

tions, monovalent and divalent ions and serum [46��].
There is no doubt that some peptides (e.g. a-defensins in

neutrophil granules) are present at concentrations that

virtually guarantee that they act in a directly microbicidal

fashion; however, the low concentrations and antagonism

by physiological salt concentrations (e.g. at mucosal sur-

faces) is consistent with an interpretation that at least

some cationic peptides act by alternative means in vivo.

Immune system modifiers
More recent findings have established that, at physiolo-

gical concentrations of peptides, salt and serum, antimi-

crobial peptides stimulate a broad range of biological

effects relevant to inflammation, innate immunity and

adaptive immunity [4,46��,47,48,49��] in innate immune

cells (neutrophils and epithelial cells) and in cells that

bridge the innate and adaptive immune systems (mono-

cytes, macrophages and dendritic cells [DCs]). Mamma-

lian host defense peptides have been shown to boost,

inhibit or complement cellular functions such as chemo-

taxis, apoptosis, gene transcription and cytokine produc-

tion [47,50]. Such biological effects probably promote

bacterial clearance, although not via direct killing.

Further, the evidence suggests that the peptides have

roles in immunity beyond antimicrobial activity, in sup-

pressing bacterial-induced cytokine production (anti-

inflammatory), and stimulating wound healing, angiogen-

esis and adjuvanticity (all of which have been demon-
Current Opinion in Immunology 2006, 18:24–30
strated in animal or tissue models [51]), explaining the

increasing use of the term ‘host defense peptides’.

Immune activation
Cathelicidins and defensins secreted at sites of infection

and/or injury are chemotactic for effector cells, induce the

transcription and secretion of chemokines and induce

histamine release from mast cells [52–54]. Together, this

promotes recruitment of innate and adaptive immune

cells required for the cellular and humoral responses to

pathogens. a-Defensins and hBD-2, -3 and -4 are che-

motactic for monocytes, (memory and naı̈ve) T cells and

immature DCs [55–58]. Bovine, human, mouse and pig

cathelicidins are chemotactic for virtually all subsets of

peripheral blood cells in vitro [51,59] and in vivo [59,60].
For example, LL-37 induces IL-8 release which in turn

promotes the chemotaxis of neutrophils and release of

high concentrations of LL-37. A similar scenario is

observed in invertebrates, where the circulating hemo-

cytes migrate through chemotaxis to the site of injury,

where they release peptides. Host defense peptides also

stimulate the release of particular cytokines; for example,

a peptide derived from the Limulus polyphemus anti-LPS
factor induced the release of antiviral and immunomo-

dulating cytokines, IFN-a, IFN-g, IL-2 and IL-13, but

not TNF-a or IL-6 [61], from human peripheral blood

mononuclear cells. Further, this peptide increased survi-

val in mice following a lethal dose of Pseudomonas aeru-
ginosa which was correlated with diminished systemic

TNF-a and elevated mRNA synthesis of IL-2, IL-12

and IL-13, but not IL-4 and IL-10, in the spleen and liver

[61,62]. LL-37 induces the release of IL-6, IL-8, TNF-a,

granulocyte-macrophage colony-stimulating factor and

IL-1b in human keratinocytes [63��] and enhances

TNF-a and IL-6 secretion in LL-37-derived immature

DCs [64]. Mouse b-defensin-2-matured DCs also secrete

proinflammatory (Th1-polarizing) cytokines IL-12, IL-

1a, IL-1b and IL-6 [65].

Inflammatory and immune suppression
Although mammalian host defense peptides directly sti-

mulate certain innate immune functions considered to be

proinflammatory (such as chemotaxis of leukocytes, and

induction of cytokine, chemokine and histamine release),

the peptides can also protect the host against detrimental,

potentially lethal effects, particularly those resulting from

an excessive TLR-induced inflammatory response

[33,66��]. Cathelicidins suppress the transcription of

the genes for proinflammatory cytokines (e.g. TNF-a

and IL-6) and the release of proinflammatory mediators

induced by LPS and other bacterial products, and prevent

sepsis in rodents after bacterial challenge. The endo-

toxin-neutralizing activities of host defense peptides

might also implicate cathelicidins in maintaining home-

ostasis, particularly in commensal-rich regions of the gut,

and/or in dampening excessive inflammation. In addition,

cathelicidins prevent the release of toxic components that
www.sciencedirect.com



Cationic host defense (antimicrobial) peptides Brown and Hancock 27
cause excess tissue damage and inflammation (e.g. the

proline-arginine [PR]-rich porcine cathelicidin, PR-39,

inhibits the production of reactive oxygen species,

whereas bovine myeloid antimicrobial peptide-28

induces apoptosis of activated [infected] lymphocytes),

and actively promote tissue regeneration. Cathelicidins

and defensins promote cell proliferation, vasculogenesis

and wound repair [67–70]. These neutralizing and resol-

ving effects of peptides defend the host against the

destructive components of inflammation.

Immune enhancement
There is also some indication that cathelicidins and defen-

sins can act at the interface of innate and adaptive immu-

nity [4], modulating DC function [64] and antigen-specific

immune responses. LL-37 induces differentiation of pri-

mary monocyte-derived DCs, increases endocytic capa-

city,modifies phagocytic receptor expression and function,

upregulates co-stimulatory molecule expression (CD86)

and enhances Th1 cytokine secretion (IL-12) by LPS-

stimulated DCs. Likewise, mouse BD2 stimulates DC

maturation and upregulates the expression of co-stimula-

tory molecules (CD40, CD80 and CD86), major histocom-

patibility complex class II and chemokine receptor CCR7

(CCR7 can regulate trafficking towards T cell-rich areas)

on DCs [65]. In this manner, the peptides might enhance

aspects of adaptive immunity, supporting the differentia-

tion of certain cell lineages and possibly altering the

cytokine milieu and, in turn, the polarization (Th1 or

Th2) of the response. IL-22 upregulates hBD-2 and -3

expression in keratinocytes [13], IL-4 release from Th2

cells andupregulation ofmajor histocompatibility complex

I antigen expression and acute phase proteins. The low

expression of hBD-2 and -3 mRNA in skin lesions from

patientswith atopic dermatitis has been correlatedwith the

elevated expression of Th2 cytokines [28]. These data

provide evidence that host defense peptide expression,

and potentially function, correlates with aspects of the

adaptive immune response. Further, LL-37 has synergy

with cytokines, such as granulocyte-macrophage colony-

stimulating factor and IL-1b [46,66��], thereby enabling

low concentrations of the peptide to influence the immune

response. Used as adjuvants, LL37, CRAMP and mouse

BD2 enhanced antigen-specific humoral and cellular

responses [59,71��,72]. These peptides might be effective

adjuvants as a result of their ability to elicit several

responses, including the recruitment, differentiation and

activation of effector cells at the site of infection.However,

the effects of peptides on lymphocyte function (B cell

activation and antibody production, cytotoxic T cell and

natural killer cell killing and Th cell function) are, as yet,

poorly described in the literature.

Mechanism of immune modulation
The biological effects of host defense peptides, similarly

to their expression and secretion, are often induced by

inflammatory stimuli (including conserved microbial
www.sciencedirect.com
components of endogenous or pathogenic origin) and

are influenced by the physiological setting, including

the concentration of the peptide, the cellular environ-

ment and soluble components of the extracellular milieu.

The mechanism by which host defense peptides exert

immune-modulating effects probably involves multiple

mechanisms, including direct binding to endotoxic LPS

and known or putative surface receptors and/or intracel-

lular signaling molecules and receptors. It has been

reported that cathelicidins bind to a variety of receptors

[73–75,76�,77], activate components of the mitogen-acti-

vated protein kinase signal transduction pathways

[59,75,77,78], induce Ca2+ mobilization [52,59], bind to

SH3-domain-containing proteins [79,80] and inhibit LPS-

induced NFkB translocation [66��,81]. Mouse BD2 acti-

vates NFkB and might function as an endogenous ligand

of TLR4 signaling [65]. The ligand–receptor interactions

of cathelicidins are not well understood, and, although

some functions are dependent on known receptors (e.g.

LL-37 directly mediates chemotaxis of human peripheral

blood neutrophils, monocytes and T cells through formyl

peptide receptor-like 1 [73]), other biological functions

are not associated with known receptors.

Therapeutics
Functional similarities among the antimicrobial host

defense peptides of distant evolutionary species indicate

that the study of both vertebrate and invertebrate peptides

could permit the development of new design templates for

anti-infectious agents in humans [5,82]. Although not

widely investigated at present, there are an increasing

number of reports of the immunomodulatory effects of

natural and synthetic host defense peptides onmammalian

hosts, including neutralization of LPS, induction of signal

transduction, gene transcription and release of reactive

oxygen species [82,83], and interest is high for developing

these as a novel therapy for human infectious diseases,

through the selective boosting of innate immunity [51].

Several companies are actively pursuing the host defense

peptides as novel antimicrobial therapeutics, with the

indolicidin-like peptides ofMigenix (formerlyMicrologix)

having advanced to Phase IIIb clinical trials for prevention

of catheter-associated infections [84�]. The functional

redundancy between species, the antiseptic and antimi-

crobial activities, adjuvant properties and low toxicity

make them attractive therapeutic agents [1,48,82,84�].
Further, functionally active domains are apparently loca-

lized to different regions of the peptide (demonstrated for

the antimicrobial and immunomodulatory functions),

enabling the development of peptides with potent and

specific functions [51,63��].

Conclusions
In summary, there is emerging evidence that host defense

peptides actively participate in all stages of host immune

defenses: exerting antimicrobial activity through direct

killing and/or stimulation of biological functions in
Current Opinion in Immunology 2006, 18:24–30
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immune effector cells during the inflammatory and

immune response, by communication with cells at the

interface of the innate and adaptive immune system, and

in the control and resolution of the inflammatory

response.

A more detailed analysis of host defense peptides will

aid our understanding of how these peptides participate

in the recognition and neutralization of pathogens,

which will assist in the development of a new anti-

infective therapeutic strategy. These studies will

expand on current structure–function analyses and will

build on reports of immune modulating functions by

elucidating the mechanisms of action of the peptides. Of

highest importance, future studies will exploit and build

on the diverse nature of peptides and adhere to phy-

siologically relevant conditions, ultimately validating, in
vivo, host defense peptide functions that protect against

bacterial challenge and suppress potentially harmful

inflammation.
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